Octopaminergic modulation of contrast sensitivity
نویسندگان
چکیده
Sensory systems adapt to prolonged stimulation by decreasing their response to continuous stimuli. Whereas visual motion adaptation has traditionally been studied in immobilized animals, recent work indicates that the animal's behavioral state influences the response properties of higher-order motion vision-sensitive neurons. During insect flight octopamine is released, and pharmacological octopaminergic activation can induce a fictive locomotor state. In the insect optic ganglia, lobula plate tangential cells (LPTCs) spatially pool input from local elementary motion detectors (EMDs) that correlate luminosity changes from two spatially discrete inputs after delaying the signal from one. The LPTC velocity optimum thereby depends on the spatial separation of the inputs and on the EMD's delay properties. Recently it was shown that behavioral activity increases the LPTC velocity optimum, with modeling suggesting this to originate in the EMD's temporal delay filters. However, behavior induces an additional post-EMD effect: the LPTC membrane conductance increases in flying flies. To physiologically investigate the degree to which activity causes presynaptic and postsynaptic effects, we conducted intracellular recordings of Eristalis horizontal system (HS) neurons. We constructed contrast response functions before and after adaptation at different temporal frequencies, with and without the octopamine receptor agonist chlordimeform (CDM). We extracted three motion adaptation components, where two are likely to be generated presynaptically of the LPTCs, and one within them. We found that CDM affected the early, EMD-associated contrast gain reduction, temporal frequency dependently. However, a CDM-induced change of the HS membrane conductance disappeared during and after visual stimulation. This suggests that physical activity mainly affects motion adaptation presynaptically of LPTCs, whereas post-EMD effects have a minimal effect.
منابع مشابه
A map of octopaminergic neurons in the Drosophila brain.
The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system i...
متن کاملOctopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons.
Locomotor activity like walking or flying has recently been shown to alter visual processing in several species. In insects, the neuromodulator octopamine is thought to play an important role in mediating state changes during locomotion of the animal [K.D. Longden & H.G. Krapp (2009) J. Neurophysiol., 102, 3606-3618; (2010) Front. Syst. Neurosci., 4, 153; S.N. Jung et al. (2011)J. Neurosci., 31...
متن کاملMonoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans.
Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α(2)-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of no...
متن کاملOctopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow
In a variety of species locomotor activity, like walking or flying, has been demonstrated to alter visual information processing. The neuromodulator octopamine was shown to change the response characteristics of optic flow processing neurons in the fly's visual system in a similar way as locomotor activity. This modulation resulted in enhanced neuronal responses, in particular during sustained ...
متن کاملDesign and Fabrication Process of MTF Phantom CT Scan
Introduction: One of the main steps in the optimization process in diagnostic imaging is the quality control of radiology devices. The usual method of CT scan calibration is used of a phantom. The phantom created a certain weakening for the radiation through which it passes. One of the most suitable methods for quantitative analysis of the resolution and contrast in CT scan im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012